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Species Diffusion in ALE3D (U)  
 

Albert L. Nichols, III 

*Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 
ALE3D is a finite element arbitrary Lagrange-Eulerian hydro code with 
thermal transport and chemical reactions. In order to consider problems 
of aging a species diffusion capability was added. Species diffusion is the 
process whereby species move under potential flow from one location in 
the system to another. The diffusion method needed to work with element-
centered concentrations. In order to fit within the ALE3D scheme, the 
method also needed to work on an arbitrarily connected hexahedral mesh. 
Since the rate of species diffusion is usually slow compared to other 
processes, it an explicit method is sufficient. Finally, the method must 
conserve total species concentration. Three separate finite volume 
algorithms were developed. These methods share the following 
characteristics: species fluxes of mass and energy are defined at each 
face. A second order predictor corrector scheme is used, with the ratio 
between the corrected mass flux and the predicted mass flux being used to 
define an accuracy time step constraint. The courant like diffusivity 
constraint is used for the stability constraint. Examples are shown.  

1 Introduction 
Understanding the behavior of systems over time is an important part of stockpile 

stewardship. One aspect of this behavior has to do with the migration of various species 
within the system. By modeling the process whereby species of interest move from one 
location to another in a system, we will be better able to define the systems long time 
environment. The ALE3D code [Sharp et. al.] is an arbitrary Lagrangian Eulerian code 
used for solving a variety of coupled hydrodynamic, thermal, and chemical problems. 
Because of ALE3Ds capabilities, it was decided to add species diffusion on top of its 
existing capabilities.  

In this paper we will describe several algorithms for species diffusion implemented in 
ALE3D. We will first describe the background of ALE3D as it applies to diffusion 
problems in section 2.1, then consider the underlying diffusion equations as they apply to 
low temperature species diffusion in section 2.2. We will progressively derive three 
diffusion algorithms that fit within the ALE3D framework in section 2.3. Results of each 
of these methods will then be shown in section 3, and we will conclude in section 4. 



2 Background 

2.1 Background: ALE3D 
Before we can define the method used to solve the species diffusion problem, it is 

necessary to define the computational environment it will be in. All of the development 
described here has been done within the framework of the ALE3D code. The thermal 
transport is based on a finite element scheme derived from TOPAZ3D. With this 
approach, the temperature field is represented by tri-linear basis functions centered on the 
nodes. One natural approach to species diffusion, since the underlying equations look 
similar, would be to use the thermal transport machinery for the species diffusion. There 
are two problems with this approach. First, while the final solution of a temperature field 
needs to be continuous, the final species distribution will, in general, have 
discontinuities, as at boundaries between different solvents. For example, the equilibrium 
concentration of salt in a system of water and air is a little salt in the air and a lot in the 
water. Thus, unless one required a mesh discontinuity at solvent boundaries, placing the 
species concentration at nodes, as is done with the temperature, would not allow one to 
model the physical system correctly – the solution would have a continuous solution 
when a discontinuous one was required. One could use the finite element approach if 
instead of using it on the mesh one used the dual of the mesh, where the nodes of the dual 
are the elements of the original mesh. However, all of the physics in ALE3D works on an 
arbitrarily connected hexahedral mesh. The dual of such a mesh is not well posed and 
would include arbitrary polyhedral elements.  

On the other hand, while species concentrations can be discontinuous, their chemical 
potential will be continuous at equilibrium. Therefore, we can construct a continuous 
chemical potential field at the nodes or faces. Finally, we must conserve mass. Finite 
element schemes would conserve the mass of each species globally, but not necessarily 
locally. Therefore, for these reasons, we have taken a finite volume approach to solving 
the diffusion equation. We will require that the flux going out of a face of one element 
will be the flux going into its neighbor through the same face. 

2.2 Background: Diffusion 
Multi-component species diffusion is defined by the equation [Cussler]: 
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where β is one over the temperature multiplied by the Boltzmann constant, µi, xi and νi 
are the chemical potential, mole fraction, and drift velocity, respectively, for the ith 
species, and Dij is the ij-binary diffusion constant. We can define iD  as the average 
diffusion constant for i, and iv as the average drift velocity felt by i, with the following 
definitions: 
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With these definitions we can write the diffusion equation in a more familiar form: 

iiii Dvv µβ∇−=  [4] 

An important consideration is that the chemical potential of a species with no 
concentration is negative infinity. Because such a condition is not unusual when setting 
up a problem, and because negative infinite numbers are difficult to deal with within a 
computational model, it is necessary to restructure these equations in terms of activity 
coefficients. 
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where iα  is the activity coefficient, zi is the excess activity coefficient, and iρ is the 
density. By substituting Eq [5] into Eq [4], we have 
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or 
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2.2.1 General assumptions 
Since species diffusion is a slow process when compared to the other processes in 

most simulations, it was decided to implement an explicit species diffusion algorithm. 
We construct a mass change operator [ ]sMM∆  that calculates the change in mass for the 
time step, given the initial concentration sM . This operator is built by looping over each 
face to determine the species mass flow between the two elements. The mass flux is then 
the product of the species density flux and the area through which it travels. The total 
change of mass for a species is the sum of the mass fluxes into the element. We use a 
predictor-corrector method to solve for the new concentrations. That is, the first estimate 
for the new mass concentration is 
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The predictor concentration is then used to correct the mass change, so that the final mass 
concentration is 
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Since we are using an explicit time advance scheme, we need both an accuracy and a 
stability time step control. We use the initial mass change and its correction to define an 
accuracy error term: 
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This error is compared to a user defined error limit to control the time step. We also use 
the diffusion equivalent of the courant condition as the stability time constraint: 

D
lt

2

≤∆  [11] 

2.3 Tracer Diffusion Approximation 
If one can assume that concentration of the diffusing species is small compared to the 

rest of the system, and that the drift velocity of all non-diffusing species is zero, then 
0=iv  and the original diffusion equation becomes  

iii Dv µβ∇−= . [12] 

These assumptions define the tracer diffusion model. The tracer diffusion 
approximation was made for the initial implementation of all of the models described 
here. 
2.3.1 Method 1 

Method 1 is the simplest of the models developed here. The concept is that we need 
to find a value of the activity at each face center such that when one uses that activity to 
calculate the activity gradient between the face and the element, the flux calculated from 
both elements connected to that face are continuous. The species flux is defined as ρivi. 

The flux continuity at each face requires . Making the tracer diffusion 

assumption, defining  to be the unit vector between the two elements connecting a 
face, starting from the i

2211
iiii

vv ρρ =
il̂
th element going toward the face, and defining  as the distance 

along the unit vector between the element center and the face center (note that this will 
generally require a projection operation). Then the flux continuity requirement can be 
written: 
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which can be solved for the face activity : s
iα
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The mass flux through that face is then just the product of the flux in the direction of the 
vector connecting the two elements and the area: 
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In the results section, it will be shown that this scheme works well with orthogonal 
meshes, however does have some issues when the mesh is skewed. 
2.3.2 Method 2 

Method 2 was developed after examining the problems with method 1. The major 
issue with model 1 is that it creates fluxes that are in the direction between the two 
element centers connected by a face. And all fluxes flow from the high activity element 
to the one with low activity. With a sufficiently skewed mesh, it is possible that the 
correct flow will be from the low activity to the high activity element. Because method 1 
only examines the two elements on either side of a face, it is incapable of accommodating 
the skew of the system. In particular, the flux through the face is independent of the 
activities of the surrounding elements 

In order to correct for this deficiency it is necessary to provide more information 
about the distribution of the activities around the face. If we examine the formula for the 
face activity from method 1, we find that it can be considered an average of each 

elements activity, weighted by 
lz

D

i

i . One way of providing that extra information is to 

create an effective nodal activity by averaging the activity of the elements surrounding 
the node: 
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where le is the distance between the element center and the node. With an average 
activity at each node, and the activity at each element center, one can construct an 
activity gradient that is centered at the face. We then calculate an face average inverse 
diffusivity and insert that into Eq. [7]. Solving for the species flux gives 
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The total species mass flux across the face is then just the species flux doted into the area 
vector of the face: 
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In the results section it will be shown that method works well in meshes where the 
mesh lines are parallel to each other, but again has some issues when the mesh lines are 
kinked. 
2.3.3 Method 3 

As with method 2 building from method 1, the development of method 3 was an 
attempt to improve on the results of method 2. The central error in method 2 arises from 
the method to determine the nodal activity. Since it uses an average, the nodal activity 
will always be bracketed by the activities of the neighboring elements. In severely 
deformed meshes, it is possible that the node will be outside the volume defined by the 
element centers. In such a case, it would not be unreasonable for the activity to not be 
bracketed by the elemental ones. Method 3 addresses this issue by finding the value of 
the nodal activity and flux that fits the local environment best. We begin by expanding 
the activity about a node in a Taylor series: 
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where neα∇  is the gradient of the activity between node n and element center e, and  i
the predicted activity at the element center. The gradient of the activity is not required to 
be continuous, however the species flux is. So we solve Eq. [7] for the activity and ins
it: 
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This equation describes the activity in each element as a function of the nodal activity, 
nodal flux, and elemental diffusion constant. We can now construct an error measure E 
that is the sum of the squares of the difference between the actual elemental activity and 
the value predicted from the node multiplied by an elemental weight : ew
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We can minimize the error measure by taking its derivative with respect to the nodal 
activity and species flux, and setting those derivatives to zero: 
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This equation can be expressed more simply by defining ( )
e
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letting the elemental weight be the inverse of the distance between the node and the 
element center, we can write the minimization as a matrix equation to solve: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ene

e

nn

n

nenene

ne

v αξ
α

ρ
α

ξξξ

ξ1
 [24] 

With this notation, flux boundary conditions are defined as 
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and the activity boundary conditions are defined as 
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In order to define the no external flux boundary condition, it is necessary to define a 
projection operator for each external surface associated with the element: 

( )nnIP ˆˆ−= , [27] 

where  is the outward surface normal of the external face. The outward surface normal 
is calculated by dividing the external faces about a node into orientation groups, where 
faces in the same group have similar normals, that is, the absolute value dot product 
between any two in the group is greater than 0.8. By dividing the external faces into 
groups, we are able to support multiple surfaces, as one would find at a corner. The 
average normal for each group is calculated and then the projection operator is created 
for each group. The projection operator is then applied to the flux field to project out the 
out of plane driving force. This leads to 
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Unless we are defining an activity boundary condition, we actually do not need to 
know the final nodal activity. Thus, we can reduce the complexity of the equation by 
conducting the Schur reduction on the matrix equation, reducing the problem to a simple 
3x3: 
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The natural tendency would be to simply solve the resultant matrix equation. 
However, it can be shown that at external 
surfaces the matrix will be singular. This is 
because the projection operator has the 
effect of reducing the number of degrees of 
freedom in the problem. Thus, there exists a 
zero eigen-value associated with the out of 
plane motion. Since we know that the final 
solution will have no component in that 
direction, and that the matrix can be 
represented as the product of the outer 
product of the eigenvectors to the 
eigenvectors ( ∑=

i
iii vvM λ ), we add the 

outer product of the zero eigenvector to the 
matrix. Once the matrix is no longer 
singular, we can solve for the species flux 

ii vρ . The mass flux through each face is 
then computed by integrating the bi-linear 
species flux as defined by the nodes over the face. 

Figure 1. The Kershaw mesh is used 
to gauge the quality of the diffusion 
solution for each of the methods 
defined here. The initial high 
concentration of the diffusing species 
is to the left of the solid line at x=0. 

2.4 Non Tracer Diffusion 
With the development of model 3, we returned to consider the issue of non-tracer 

diffusion. Rearranging Eq [7] to express the activity gradient in terms of the fluxes and 
inserting it into equation [19], we get the non-tracer equivalent to [20]: 
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and the error term that must be 
minimized is: 
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Figure 2. Solution of a finite element 
thermal problem equivalent to the 
species diffusion problems. The color 
is the pseudo-color plot of the 
concentration, and the lines are the 
iso-concentration contours. 

The constraint that the sum of the species 
fluxes is zero is required to maintain the 
total mass in each element by requiring 
that the mass flowing out of a face is 
balanced by an equivalent inflow. These 
equations are solved using the LAPACK 



routine DGGLSE which solves the 
least squares problem. 

3 Results 
We decided to use a modified 

Kershaw Z mesh to highlight the 
issues associated with each of these 
algorithms, shown in Figure 1. The 
Kershaw Z mesh consists of many 
distorted elements that are also 
oriented in non-orthogonal directions 
that can lead to rather peculiar 
interactions between elements. For 
this study, we the mesh is one 
element thick. The initial 
concentration of the diffusion species 
is set to be a step function at x=0, 
shown as a heavy line in Figure 1. 
The concentration is 0.001 for x<0 
and 0.0001 for x>0. We solved the 
equivalent thermal problem using the finite element scheme built into ALE3D. The 
results are shown in Figure 2. Note that the finite element scheme does a good job of 
maintaining the one dimensional nature of the solution, with the iso-thermal lines 
showing only a slight deviation from straight vertical lines. 

 Figure 3. Plot of pseudo-color and 
contour plots of mass concentration of the 
trace component solved by on a Kershaw 
mesh using tracer diffusion method 1. A 
straight line has been added as a guide the 
eye. 

The diffusion on the Kershaw mesh problem was solved for each of the tracer diffusion 
methods defined here. Figure 3 shows the results from method 1. The solution time for 
this problem on an SGI 200 MHz 
R10000 was 119 µs per zone-cycle. 
Note the significant deviation from 
true one dimensional behavior. In 
method 1, the species flux tends to 
follow the mesh lines. As long as the 
mesh is reasonably orthogonal, the 
flux behaves properly. But where the 
mesh stops being orthogonal, the 
fluxes either pile up or disperse. 

 Figure 4. Plot of pseudo-color and 
contour plots of mass concentration of the 
trace component solved by on a Kershaw 
mesh using tracer diffusion method 2. A 
straight line has been added as a guide the 
eye. 

Figure 4 shows the results for 
method 2. The solution time for this 
problem on an SGI 200 MHz R10000 
was 123 µs per zone-cycle, 
approximately 3% more expensive 
than method 1. There is still some 
deviation from the one dimensional 
behavior, but the error is significantly 
reduced from that found in method 1. 



Figure 5 shows the results for 
method 3. The solution time for 
this problem on an SGI 200 MHz 
R1000 was 192 µs per zone-cycle, 
approximately 60% more 
expensive than either method 1 or 
2. Here the iso-concentration lines 
are very straight, indicating good 
one-dimensional behavior, even on 
this difficult mesh. The deviations 
in linearity at the creases in the 
mesh can be ascribed to artifacts in 
the VisIt contour reconstruction 
algorithm. With that consideration, 
method 3 is arguably better at 
preserving the one dimensional 
nature of the solution than the finite 
element approach used for the 
thermal solver, as shown in Figure 
2. 

We show here an example of 
the solution of a non-tracer diffusion problem in Figure 6. The left face is subject to a 
species activity boundary condition, and the face on the right has been subject to a 
species flux boundary condition. Note the flair that is occurring on both sides, as the 
material is flowing in and swelling the 
block. The non-tracer scheme is 
required for this kind of problem 
because of the large amount of material 
which is moving about the system 

  

Figure 5. Plot of pseudo-color and 
contour plots of mass concentration of the 
trace component solved by on a Kershaw 
mesh using tracer diffusion method 3. A 
straight line has been added as a guide the 
eye

Figure 6. Pseudo-color plot of species 
mass fraction in a box with a species 
potential boundary condition on left and 
in flux boundary condition on the right. 
Because of the significant inflow of 
material, a non-tracer diffusion scheme 
was required. 

4 Conclusion 
In this paper, we have shown the 

development of three diffusion 
algorithms that have been implemented 
in ALE3D, each with their advantages 
and disadvantages. All three methods 
use a predictor-corrector method to 
advance the composition. Method 1 
uses information available at each face 
to define the face flux, and is the 
fastest. Method 2 averages elemental 
information to the nodes to construct a 
face flux using the computed gradient 
on the face, and is only slightly slower 
than method 1. Method 3 uses a least 
squares approach to find the best 
activity and flux at each node, and then 



uses the nodal fluxes to compute a face flux, and is the slowest of the methods. All three 
methods give accurate results on orthogonal meshes. However, the accuracy of method 1 
decreases rapidly as the orthogonal nature of the mesh is reduced. Method 2 and 3 
operate well on parallel meshes because they are not wed to the actual mesh connectivity. 
However, the fact that method 2 depends on averaging of element data to the nodes limits 
its accuracy as the mesh topology becomes more distorted. Finally, method 3 appears to 
provide good answers regardless of the topology.  

With these considerations, if one were considering diffusion on an orthogonal 
Eulerian mesh, method 1 would be a suitable choice. If the expected mesh distortion can 
be expected to be slight, without the creation of significant creases in the mesh, then 
method 2 appears to be a good compromise in accuracy and speed. Finally, if preserving 
linear behavior in distorted meshes is a priority, as when one is considering moving parts 
near a fixed lagrange boundary, then method 3 should be used. 

The extension of method 3 to include non-tracer diffusion will allow us to model 
systems where the diffusing species can be a significant fraction of the system. 
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